# The DUNE-PRISM Measurement Program for DUNE

Mike Wilking, Stony Brook University for the DUNE-PRISM Working Group

T. Cai<sup>1</sup>, J. Calcutt<sup>2</sup>, D. Douglas<sup>2</sup>, K. Mahn<sup>2</sup>, S. Manly<sup>1</sup>, L. Pickering<sup>2</sup>, H. A. Tanaka<sup>3</sup>, C. Vilela<sup>4</sup>, M. J. Wilking<sup>4</sup>, and G. Yang<sup>4</sup>

DUNE Collaboration Call June 22nd, 2018

#### Near Detector Group Recommendations

- Full report available in DUNE docdb 8184
- Recommendations excerpt:
  - R2) The design of a mobile LAr detector that can make measurements at one or more off-axis positions should go forward (DUNE-PRISM). The detector will need a side and downstream muon system for containment, which could either be the multi-purpose tracker (MPT) or a dedicated detector.
  - R3) Additional study of the DUNE-PRISM for technical feasibility and cost should be made.
  - R4) The underground experimental hall should be rotated by 90° in respect the the beam axis to allow for moving the near detector off axis.

 DUNE-PRISM technical note is also available in DUNE docdb 8106:

#### The DUNE-PRISM Near Detector Program

T. Cai<sup>1</sup>, J. Calcutt<sup>2</sup>, D. Douglas<sup>2</sup>, K. Mahn<sup>2</sup>, S. Manly<sup>1</sup>, L. Pickering<sup>2</sup>, H. A. Tanaka<sup>3</sup>, C. Vilela<sup>4</sup>, M. J. Wilking<sup>4</sup>, and G. Yang<sup>4</sup>

<sup>1</sup>University of Rochester <sup>2</sup>Michigan State University <sup>3</sup>SLAC National Accelerator Laboratory <sup>4</sup>Stony Brook University

#### How to Measure Neutrino Oscillations

In a near/far experiment, σ uncertainties will cancel?

$$ND(\nu_{\mu}) = \Phi(E_{\nu}) \times \sigma(E_{\nu}, A) \times \epsilon_{ND} \times M_{E_{true}}^{E_{rec}}$$

$$FD(\nu_{\mu}) = \Phi(E_{\nu}) \times \sigma(E_{\nu}, A) \times \epsilon_{FD} \times P_{osc} \times M_{E_{true}}^{E_{rec}}$$

# Cancelations of uncertainties in both flux and cross sections are spoiled by energy migrations



#### Near Detector Measures:

- $m v_{\mu}$  energy spectrum
- Small v<sub>e</sub> component

#### Far Detector Measures:

- Osc.  $v_{\mu}$  energy spectrum
- Large  $m v_e$  appearance signal



- E<sub>true</sub> → E<sub>rec</sub> migration matrix has significant off-axis components
  - Several important cross section uncertainties will not cancel

## Measuring E<sub>v</sub>

Martini et al. arXiv: 1211.1523



Must assume mass of recoiling hadron(s)

Problematic due to
Multi-nucleon interactions



Lepton + Hadronic Energy:



energy (feed down)

Missing hadronic energy from n, unseen π<sup>+</sup>, binding energy, etc.

Energy loss is different for v and anti-v

http://public.lanl.gov/friedland/LBNEApril2014/LBNEApril2014talks/McGrew LANL Apr2014.pdf



GEANT4 Simulation of a large LAr volume

• Need to calibrate both leptonic (e &  $\mu$ ) & hadronic energy scales and energy tails (variance)

Both effects lead to underestimating the neutrino

(True deposited hadronic energy)/ (True initial hadronic energy)

## Fake Data Studies

- Suppose that 20% of the energy assumed to be emitted by protons is actually emitted by neutrons (which are unobserved)
- Experimentalists might correct the resulting data/
   MC discrepancy by reweighing the do/dT
   distribution in the cross section model
  - This would be a typical result of fitting near detector data
- Both the T<sub>proton</sub> and E<sub>rec</sub> distributions can then agree perfectly
  - It looks like we perfectly understand our cross section model!
  - However, E<sub>rec</sub> feed-down in data is much different than <u>our model tells us</u>

#### Near Detector Tproton On-Axis







## Fake Data II (Or: How to get the Wrong Answer for $\delta_{CP}$ )

- Despite perfect agreement at the near detector, the fake data oscillation pattern at the far detector is wrong
  - Etrue -> Erec is different than our model tells us
    - Even though our model was "confirmed" by our perfect near detector fit!
  - The  $E_{rec}$  distribution is shifted (wrong  $\Delta m^2$ ) with a different magnitude oscillation dip (wrong  $\theta_{23}$ )
- Similarly, the v<sub>e</sub> distributions are also wrong
  - ...and by different amounts for neutrinos and anti-neutrinos
  - Hence, DUNE would measure the wrong value for δ<sub>CP</sub>



DUNE Oscillation Result
When Fitting the Fake Data or
the Nominal MC Prediction



# DUNE-PRISM

- By moving the near detector to several off-axis positions, we can measure different E<sub>V</sub> spectra
- This provides a new degree of freedom over which we can constrain E<sub>rec</sub> vs E<sub>true</sub>
- There are various ways to combine such information to constrain the effects of cross section uncertainties on DUNE oscillation parameters
- (A few examples will be shown in this talk)



# Fake Data w/ DUNE-PRISM

- By making a measurement in at least 1 off-axis location, formerly unseen problems in cross section modeling can be identified
  - e.g. we can avoid getting the wrong answer for e.g.  $\delta_{CP}$
- Now our cross section model
   E<sub>true</sub> → E<sub>rec</sub> matrix can be tested with 2 very different neutrino energy spectra
- We can do even better by making measurements at many off-axis locations
  - Particularly if we can continuously sample the whole off-axis range from ~33 m to onaxis

More details here: https://indico.fnal.gov/event/14582/session/3/contribution/115/material/slides/





#### Near Detector E<sub>reco</sub> 18 m Off-Axis



# "Oscillated" Fluxes at the ND

- Recall:  $E_{true} \rightarrow E_{rec}$  migrations are problematic due to near  $\rightarrow$  far flux differences (due to oscillations)
- We can construct at "oscillated" flux at the near detector using linear combinations of off-axis measurements
- These linear combinations are largely insensitive to the expected flux systematic uncertainties



Linear Combinations of measurements at different off-axis angles



# Data-Driven Oscillated Erec

- The flux-fit linear combinations are applied to the measured E<sub>rec</sub> distributions at each off-axis location
  - This gives a data-driven estimate of the E<sub>rec</sub> distribution we would see at the far detector
  - Near to far extrapolation is now independent of GENIE to first order (Residual model dependence remains in background subtraction and flux fit corrections)
- Work-in-progress; efficiency correction still under study (next slide)



## Off-Axis Efficiencies

- Ideally, we would like uniform efficiency across all off-axis positions
  - Current event selection requires < 20</li>
     MeV of hadronic energy in our 50 cm of LAr active region
- Unfortunately, hadronic showers can more easily reach the veto region when closer to the edge of the detector
- Fiducial volume is reduced in off-axis direction so selected events are less likely to trigger the hadronic shower veto
  - This makes the efficiency more uniform vs off-axis angle





#### ND LAr Detector Size & Movement

- Originally assumed LAr size was 4 m wide (off-axis) x 3 m (tall) x 5 m (beam direction)
  - This is the "minimal" size for hadronic shower containment
- However, to contain sideways-going muons, off-axis dimension should be increased (4 m → 7 or 8 m)
  - Removes the need for a side muon detector
- For the DUNE-PRISM program, a wider detector means less measurement positions, and more uniform efficiency

#### LAr Dimensions



- 3 options under investigation by Fermilab engineers:
- 1. A continuously moving LAr detector
- 2. Moving to fixed positions
- 3. A fixed, ~35 m wide LAr detector

## **How Far Off-Axis?**

- Further off-axis = lower reach in neutrino energy
- 500 MeV flux peaks at 26 m off-axis
  - To properly understand events at 500 MeV, we need access lower energies at further off-axis positions
- One method to determine the lowest needed energy is to construct a Gaussian energy spectrum at 500 MeV (10% width) using linear combinations of off-axis fluxes
  - This is not the only method one could employ (see next slides)











# Oscillated Flux Fits

- We can also use linear combinations of off-axis fluxes to construct an oscillated flux seen at the far detector for any currently allowed set of oscillation parameters
  - Again, this is not the definitive metric, but it does show how well such a fit can resolve the bump below the 2nd oscillation maximum (which peaks as low as ~500 MeV, depending on Δm<sub>32</sub><sup>2</sup>)
- The following slides probe the 9 points in  $\Delta m_{32}^2$ ,  $\theta_{23}$  space shown in the top figure
  - Vary off-axis range used in fits



# Fluxes Up to 40 m Off-Axis

• More off-axis range than needed. We can even somewhat resolve the peak below the 3rd oscillation maximum for all values of  $\Delta m_{32}^2$ 



# Fluxes Up to 35 m Off-Axis

• Can generally resolve bump below 2nd oscillation maximum for all values of  $\Delta m_{32}^2$ , although some fluctuations are seen in the ratio to the unoscillated flux



# Fluxes Up to 33 m Off-Axis

• Can still generally resolve bump below 2nd oscillation maximum for all values of  $\Delta m_{32}^2$ , although some fluctuations are seen in the ratio to the unoscillated flux



# Fluxes Up to 30 m Off-Axis

 Poor fits around the 2nd oscillation maximum for low Δm<sub>32</sub><sup>2</sup> region; ability to constrain systematics in this region may be compromised



# Fluxes Up to 28 m Off-Axis

 Very poor fits around the 2nd oscillation maximum for low Δm<sub>32</sub><sup>2</sup>; limiting to 28 m can cause harm to 2nd oscillation maximum physics



# Ideal ND Hall Layout



Previous Hall Plan

### Conclusion

- DUNE's ability to measure  $\delta_{CP}$  depends on a precise understanding of  $E_{true} \rightarrow E_{rec}$ 
  - Significant model dependence exists due to missing neutrons, missed or mis-ID pions, binding energy, etc.
- The DUNE-PRISM measurement program has been recommended by the DUNE ND group to provide a data-driven constraint of E<sub>true</sub> → E<sub>rec</sub>
- The mechanism for making off-axis measurements (continuous vs discrete movement, and detector width) is in the process of detailed engineering studies
  - Decision still pending on whether downstream tracker will move, or whether a separate, downstream muon spectrometer is needed to move with the LAr
- Additional physics studies are underway to further demonstrate the robustness of this approach to neutrino interaction uncertainties